RM. Imam Koesoepangat

" Sepiro Gedhining Sengsoro Yen Tinompo Amung Dadi Cobo "

Anonim

"Bukan Seberapa Banyak Ilmu Yang Telah Kamu Dapat, Tetapi Seberapa Banyak Ilmu Yang Telah Kamu Berikan"

Nabi Muhammad SAW

Ø£ُØ·ْÙ„ُبُوا الْعِÙ„ْÙ…َ Ù…ِÙ†َ الْÙ…َÙ‡ْدِ اِلىَ اللَّÙ‡ْدِ, “Tuntutlah ilmu sejak dari buaian sampai liang lahat”

Senin, 22 April 2013

Circuit Breaker - Sakelar Pemutus Tenaga/PMT-- Bagian II

Klasifikasi Circuit Breaker

Jenis-jenis PMT berdasarkan media insulator dan material dielektriknya, adalah terbagi menjadi empat jenis, yaitu: sakelar PMT minyak, sakelar PMT udara hembus, sakelar PMT vakum dan sakelar dengan gas SF6.

1. Sakelar PMT Minyak

Sakelar PMT ini dapat digunakan untuk memutus arus sampai 10 kA dan pada rangkaian bertegangan sampai 500 kV. Pada saat kontak dipisahkan, busur api akan terjadi didalam minyak, sehingga minyak menguap dan menimbulkan gelembung gas yang menyelubungi busur api, karena panas yang ditimbulkan busur api, minyak mengalami dekomposisi dan menghasilkan gas hydrogen yang bersifat menghambat produksi pasangan ion. Oleh karena itu, pemadaman busur api tergantung pada pemanjangan dan pendinginan busur api dan juga tergantung pada jenis gas hasil dekomposisi minyak.


Gambar 1. Pemadaman busur api pada pemutus daya minyak

Gas yang timbul karena dekomposisi minyak menimbulkan tekanan terhadap minyak, sehingga minyak terdorong ke bawah melalui leher bilik. Di leher bilik, minyakini melakukan kontak yang intim dengan busur api. Hal ini akan menimbulkan pendinginan busur api, mendorong proses rekombinasi dan menjauhkan partikel bermuatan dari lintasan busur api.

Minyak yang berada diantara kontak sangat efektif memutuskan arus. Kelemahannya adalah minyak mudah terbakar dan kekentalan minyak memperlambat pemisahan kontak, sehingga tidak cocok untuk sistem yang membutuhkan pemutusan arus yang cepat.

Sakelar PMT minyak terbagi menjadi 2 jenis, yaitu:
1. Sakelar PMT dengan banyak menggunakan minyak (Bulk Oil Circuit Breaker), pada tipe ini minyak berfungsi sebagai peredam loncatan bunga api listrik selama terjadi pemutusan kontak dan sebagai isolator antara bagian-bagian yang bertegangan dengan badan, jenis PMT ini juga ada yang dilengkapi dengan alat pembatas busur api listrik.
2. Sakelar PMT dengan sedikit menggunakan minyak (Low oil Content Circuit Breaker), pada tipe ini minyak hanya dipergunakn sebagai peredam loncatan bunga api listrik, sedangkan sebagai bahan isolator dari bagian-bagian yang bertegangan digunakan porselen atau material isolasi dari jenis organic.

Tabel 1. Batas-batas pengusahaan minyak pemutus tenaga



2. Sakelar PMT Udara Hembus (Air Blast Circuit Breaker)

Sakelar PMT ini dapat digunakan untuk memutus arus sampai 40 kA dan pada rangkaian bertegangan sampai 765 kV. PMT udara hembus dirancang untuk mengatasi kelemahan pada PMT minyak, yaitu dengan membuat media isolator kontak dari bahan yang tidak mudah terbakar dan tidak menghalangi pemisahan kontak, sehingga pemisahan kontak dapat dilaksanakan dalam waktu yang sangat cepat. Saat busur api timbul, udara tekanan tinggi dihembuskan ke busur api melalui nozzle pada kontak pemisah dan ionisasi media diantara kontak dipadamkan oleh hembusan udara tekanan tinggi itu dan juga menyingkirkan partikel-partikel bermuatan dari sela kontak, udara ini juga berfungsi untuk mencegah restriking voltage (tegangan pukul ulang).


Gambar 2. Pemadaman busur api pada pemutus daya udara hembus

Kontak pemutus ditempatkan didalam isolator, dan juga katup hembusan udara. Pada sakelar PMT kapasitas kecil, isolator ini merupakan satu kesatuan dengan PMT, tetapi untuk kapasitas besar tidak demikian halnya.

3. Sakelar PMT vakum (Vacuum Circuit Breaker)

Sakelar PMT ini dapat digunakan untuk memutus rangkaian bertegangan sampai 38 kV. Pada PMT vakum, kontak ditempatkan pada suatu bilik vakum. Untuk mencegah udara masuk kedalam bilik, maka bilik ini harus ditutup rapat dan kontak bergeraknya diikat ketat dengan perapat logam.


Gambar 3. Kontak pemutus daya vakum.

Jika kontak dibuka, maka pada katoda kontak terjadi emisi thermis dan medan tegangan yang tinggi yang memproduksi elektron-elektron bebas. Elektron hasil emisi ini bergerak menuju anoda, elektron-elektron bebas ini tidak bertemu dengan molekul udara sehingga tidak terjadi proses ionisasi. Akibatnya, tidak ada penambahan elektron bebas yang mengawali pembentukan busur api. Dengan kata lain, busur api dapat dipadamkan.

4. Sakelar PMT Gas SF6 (SF6 Circuit Breaker)

Sakelar PMT ini dapat digunakan untuk memutus arus sampai 40 kA dan pada rangkaian bertegangan sampai 765 kV. Media gas yang digunakan pada tipe ini adalah gas SF6 (Sulphur hexafluoride). Sifat gas SF6 murni adalah tidak berwarna, tidak berbau, tidak beracun dan tidak mudah terbakar. Pada suhu diatas 150º C, gas SF6 mempunyai sifat tidak merusak metal, plastic dan bermacam bahan yang umumnya digunakan dalam pemutus tenaga tegangan tinggi.

Sebagai isolasi listrik, gas SF6 mempunyai kekuatan dielektrik yang tinggi (2,35 kali udara) dan kekuatan dielektrik ini bertambah dengan pertambahan tekanan. Sifat lain dari gas SF6 ialah mampu mengembalikan kekuatan dielektrik dengan cepat, tidak terjadi karbon selama terjadi busur api dan tidak menimbulkan bunyi pada saat pemutus tenaga menutup atau membuka.

Tabel 2. Karakteristik gas SF6



Selama pengisian, gas SF6 akan menjadi dingin jika keluar dari tangki penyimpanan dan akan panas kembali jika dipompakan untuk pengisian kedalam bagian/ruang pemutus tenaga. Oleh karena itu gas SF6 perlu diadakan pengaturan tekanannya beberapa jam setelah pengisian, pada saat gas SF6 pada suhu lingkungan.

Tabel 3. Batas tekanan gas SF6 pada pemutus tenaga, pada suhu 20ºC, tekanan atmosphir 760 mmHg.


Sakelar PMT SF6 ada 2 tipe, yaitu:
1. PMT Tipe Tekanan Tunggal (Single Pressure Type), PMT SF6 tipe ini diisi dengan gas SF6 dengan tekanan kira-kira 5 Kg/cm2 . selama pemisahan kontak-kontak, gas SF6 ditekan kedalam suatu tabung yang menempel pada kontak bergerak. Pada waktu pemutusan kontak terjadi, gas SF6 ditekan melalui nozzle dan tiupan ini yang mematikan busur api.
2. PMT Tipe Tekanan Ganda (Double Pressure Type), dimana pada saat ini sudah tidak diproduksi lagi. Pada tipe ini, gas dari sistem tekanan tinggi dialirkan melalui nozzle ke gas sistem tekanan rendah selama pemutusan busur api. Pada sistem gas tekanan tinggi, tekanan gas SF6 kurang lebih 12 Kg/cm2 dan pada sistem gas tekanan rendah, tekanan gas SF6 kurang lebih 2 kg/cm2. Gas pada sistem tekanan rendah kemudian dipompakan kembali ke sistem tekanan tinggi.

Daftar Pustaka

Bonggas L. Tobing, “ Peralatan Tegangan Tinggi”, Jakarta : Penerbit PT Gramedia Pustaka Utama, 2003.

Groupe Schneider Electric, “Training Manual 150 kV System”, Jakarta : Groupe Schneider Electric, 1999.

Groupe Schneider Electric, “Design, Operation and Maintenace Electrical Substation”, Jakarta : Groupe Schneider Electric, 1999.

PT PLN, “Buku Petunjuk Operasi & Memelihara Peralatan Untuk Pemutus Tenaga”, Jakarta : PT PLN Pembangkitan dan Penyaluran Jawa Bagian Barat, 1993.

Ditulis Oleh HANIF GUNTORO, Sebagai bahan Laporan Kerja Praktek, Teknik Elektro-Universitas Mercu Buana-Jakarta, PKL dilakukan di PLTGU Cikarang Listrindo.

Jumat, 19 April 2013

Mitsubishi FX - Series PLC Trainer




Bagi para penggemar electric engineering software seperti PLC pada kesempatan ini saya akan berbagi software yang gratis,,,software ini adalah sofware simulasi PLC dengan efek animasi sesuai dengan aslinya. kita bisa melakukan pemrograman dan melakukan proses running tanpa harus koneksi dengan hardwarenya secara nyata, jadi cukup simulasi saja.

mungkin ada yang sudah kenal dengan software ini atau bahkan sudah melakukan tes langsung dengan hardwarenya. saya sendiri hanya beberapa kali melakukan trial langsung PLC dengan hardwarenya, yaitu pada waktu kuliah dan praktikum saja. mau trial sendiri di kos juga terkendala dengan biaya pembelian hardware PLC yang tidak murah. jadi lebih seringnya trialnya lewat software2 simulator seperti software yang saya posting ini.

PLC merupakan perangkat yang tidak asing lagi bagi kita, banyak industri yang mempergunakannya untuk proses otomasi. perkembangannya pun sangat pesat dan sudah terintegrasi dengan berbagai hardware otomasi lainnya.

oke ini adalah screenshot dari programnya 


programnya lumayan lengkap,,dan step by step...

ada panduan / instruksi untuk setiap tahapnya,,,jadi sangat membantu....
membantu juga dalam pembelajaran bahasa inggris,,,(soalnya gak ada bahasa indonesianya)...hehehehe

kalau ingin download softwarenya silahkan klik disini

Senin, 15 April 2013

Circuit Breaker - Sakelar Pemutus Tenaga Listrik/PMT bagian 1

Pengertian CB atau PMT

Circuit Breaker atau Sakelar Pemutus Tenaga (PMT) adalah suatu peralatan pemutus rangkaian listrik pada suatu sistem tenaga listrik, yang mampu untuk membuka dan menutup rangkaian listrik pada semua kondisi, termasuk arus hubung singkat, sesuai dengan ratingnya. Juga pada kondisi tegangan yang normal ataupun tidak normal.

Syarat-syarat yang harus dipenuhi oleh suatu PMT agar dapat melakukan hal-hal diatas, adalah sebagai berikut:

1. Mampu menyalurkan arus maksimum sistem secara terus-menerus.
2. Mampu memutuskan dan menutup jaringan dalam keadaan berbeban maupun terhubung
singkat tanpa menimbulkan kerusakan pada pemutus tenaga itu sendiri.
3. Dapat memutuskan arus hubung singkat dengan kecepatan tinggi agar arus hubung singkat tidak sampai merusak peralatan sistem, membuat sistem kehilangan kestabilan, dan merusak pemutus tenaga itu sendiri.

Setiap PMT dirancang sesuai dengan tugas yang akan dipikulnya, ada beberapa hal yang perlu dipertimbangkan dalam rancangan suatu PMT, yaitu:
1. Tegangan efektif tertinggi dan frekuensi daya jaringan dimana pemutus daya itu akan dipasang. Nilainya tergantung pada jenis pentanahan titik netral sistem.
2. Arus maksimum kontinyu yang akan dialirkan melalui pemutus daya. Nilai arus ini tergantung pada arus maksimum sumber daya atau arus nominal beban dimana pemutus daya tersebut terpasang
3. Arus hubung singkat maksimum yang akan diputuskan pemutus daya tersebut.
4. Lamanya maksimum arus hubung singkat yang boleh berlangsung. hal ini berhubungan dengan waktu pembukaan kontak yang dibutuhkan.
5. Jarak bebas antara bagian yang bertegangan tinggi dengan objek lain disekitarnya.
6. Jarak rambat arus bocor pada isolatornya.
7. Kekuatan dielektrik media isolator sela kontak.
8. Iklim dan ketinggian lokasi penempatan pemutus daya.

Tegangan pengenal PMT dirancang untuk lokasi yang ketinggiannya maksimum 1000 meter diatas permukaan laut. Jika PMT dipasang pada lokasi yang ketinggiannya lebih dari 1000 meter, maka tegangan operasi maksimum dari PMT tersebut harus dikoreksi dengan faktor yang diberikan pada tabel 1.
                                        Tabel 1. Faktor Koreksi antara Tegangan vs Lokasi

 
Proses Terjadinya Busur Api

Pada waktu pemutusan atau penghubungan suatu rangkaian sistem tenaga listrik maka pada PMT akan terjadi busur api, hal tersebut terjadi karena pada saat kontak PMT dipisahkan , beda potensial diantara kontak akan menimbulkan medan elektrik diantara kontak tersebut, seperti ditunjukkan pada gambar 1.
                                                     Gambar . Pembentukan Busur Api

Arus yang sebelumnya mengalir pada kontak akan memanaskan kontak dan menghasilkan emisi thermis pada permukaan kontak. Sedangkan medan elektrik menimbulkan emisi medan tinggi pada kontak katoda (K). Kedua emisi ini menghasilkan elektron bebas yang sangat banyak dan bergerak menuju kontak anoda (A). Elektron-elektron ini membentur molekul netral media isolasi dikawasan positif, benturan-benturan ini akan menimbulkan proses ionisasi. Dengan demikian, jumlah elektron bebas yang menuju anoda akan semakin bertambah dan muncul ion positif hasil ionisasi yang bergerak menuju katoda, perpindahan elektron bebas ke anoda menimbulkan arus dan memanaskan kontak anoda.

Ion positif yang tiba di kontak katoda akan menimbulkan dua efek yang berbeda. Jika kontak terbuat dari bahan yang titik leburnya tinggi, misalnya tungsten atau karbon, maka ion positif akan akan menimbulkan pemanasan di katoda. Akibatnya, emisi thermis semakin meningkat. Jika kontak terbuat dari bahan yang titik leburnya rendah, misal tembaga, ion positif akan menimbulkan emisi medan tinggi. Hasil emisi thermis ini dan emisi medan tinggi akan melanggengkan proses ionisasi, sehingga perpindahan muatan antar kontak terus berlangsung dan inilah yang disebut busur api.

Untuk memadamkan busur api tersebut perlu dilakukan usaha-usaha yang dapat menimbulkan proses deionisasi, antara lain dengan cara sebagai berikut:
1. Meniupkan udara ke sela kontak, sehingga partikel-partikel hasil ionisai dijauhkan dari sela kontak.
2. Menyemburkan minyak isolasi kebusur api untuk memberi peluang yang lebih besar bagi proses rekombinasi.
3. Memotong busur api dengan tabir isolasi atau tabir logam, sehingga memberi peluang yang lebih besar bagi proses rekombinasi.
4. Membuat medium pemisah kontak dari gas elektronegatif, sehingga elektron-elektron bebas tertangkap oleh molekul netral gas tersebut.

Jika pengurangan partikel bermuatan karena proses deionisasi lebih banyak daripada penambahan muatan karena proses ionisasi, maka busur api akan padam. Ketika busur api padam, di sela kontak akan tetap ada terpaan medan elektrik. Jika suatu saat terjadi terpaan medan elektrik yang lebih besar daripada kekuatan dielektrik media isolasi kontak, maka busur api akan terjadi lagi.

Disconnecting Switch (DS)

         Disconnecting switch adalah saklar pemutus yang didesain tidak bisa terbuka pada saat arus beban yang melewatinya masih ada.Biasanya disconnecting switch dipasang untuk mengisolasi peralatan–peralatan yang mungkin tersupply daya besar.
Disconnecting switch biasanya dilengkapi dengan peringatan visual untuk keamanan para pekerja, dengan kata lain pada saat keadaan saklar terbuka atau tidak ada arus beban yang mengalir maka visual sign akan menyala untuk memberitahukan keadaan aman dan sebaliknya. Disconnecting switch harus benar – benar tertutup untuk mencegah kemungkinan munculnya bunga api antara pisau penghubung dengan klip penjepitnya, yang jika terjadi hal – hal tesebut akan membahayakan operator.

* Disconnecting switch, air break switch, and oil switches biasanya digunakan bersama – sama, biasanya tuasnya dioperasiakan bersama sama.
* Disconnecting switch juga digunakan untuk mengisolasi peralatan seperti terminal (buses) atau peralatan listrik yang lain, juga untuk memisahkan kelompok-kelompok feeder dengan tujuan maintenance atau pengetesan.
* Untuk perbaikan DS dilakukan pengetesan fisik dari kerusakan,membersihkan kontak kontaknya, juga memberikan pelumas pada as dari lengan (pisau) pengubungnya.
* Pada maintenance peralatan–peralatan pada gardu induk biasanya antara beban dan sumber daya dari gardu induk diputus oleh Disconnecting switch. Hal ini untuk menjaga keamanan dari para pekerja yang melaksanakan perbaikan atau perawatan, karena difungsikan untuk memisahkan bagian yang bertegangan dan tidak maka DS ini pada sisi yang tidak bertegangan dipasang grounding yang berguna untuk membuang sisa energi (kapasitansi) yang tersimpan pada konduktor, system grounding dan close dari DS ini saling interlocking. Hal ini untuk menghindari short circuit.
* Selain itu DS tidak didiesain sebagai pemutus tegangan seperti CB-CB yang terdapat pada panel atau gardu induk, oleh karena itu DS harus dilengkapi dengan pemutus beban, kerja dari DS pun harus setelah CB benar –benar open atau tidak ada daya yang mengalir ke DS, atau dapat dikatakan kerja dari DS dan CB adalah interlocking juga. Pemisah atau DS digunakan untuk menjamin keamanan para pekerja pada saat melakukan pekerjaan yang menyangkut tegangan listrik, dan juga memberikan efisiensi karena harganya yang lebih murah dibandingkan harga CB.

         Ujung dari saluran adalah Sakelar yang menghubungkan Saluran dengan bagian Instalasi yang lain. Sakelar dapat dibuka dan ditutup sesuai keperluan operasi.
Pada Jaringan Tegangan Rendah bisa dipakai Sakelar udara biasa. Tetapi untuk memutus rangkaian listrik dengan tegangan diatas 1000 Volt, timbul kesulitan jika memakai sakelar udara.
Oleh karenanya Sakelar Tegangan Tinggi (diatas 100 Volt) memerlukan teknik khusus dalam memutus rangkaian listrik. Kemampuan memutus arus listrikdengan jumlah arus listrik dengan jumlah Ampere tertentu pada tegangan operasi tertentu merupakan salah satu spesifikasi teknik yang harus dipenuhi sebuah Sakelar. Mengacu kepada ini, dalam instalasi tegangan tinggi ada tiga macam Sakelar, yaitu :
  • Pemutus Tenaga (PMT)
Pemutus Tenaga adalah Sakelar yang mampu memutus arus gangguan hubung singkat yang terjadi. Pemutus tenaga dihubungkan pada relay pengaman yang akan memberikan perintah membuka rangkaian listrik apabila terjadi gangguan hubung singkat.
  • Pemutus Beban (PMB)
Pemutus Beban adalah sakelar yang hanya mampu memutus arus beban. Operasinya dilakukan secara manual, diperlukan untuk manuver operasi.
  • Pemisah (PMS)
Pemisah adalah sakelar yang hanya boleh dioperasikan tanpa ada arus. Pemisah harus secara visuil terlihat apakah pisau-pisaunya membuka atau menutup. PMS (Pemisah) dipasang didepan dan dibelakang PMT (Pemutus Tenaga).
             Setelah PMT dibuka, tidak ada arus lagi, baru PMS boleh dibuka. Jangan sekali-kali membuka PMS yang masih berarus yaitu sebelum PMT dibuka, karena hal ini akan menimbulkan ledakan dan menimbulkan kecelakaan terhadap mereka yang ada didekat PMS tersebut.
Apabila instalasi akan disentuh, maka PMS yang bersangkutan dengan instalasi tersebut harus dibuka setelah terlebih dahulu PMT-nya dibuka. PMS perlu dibuka untik bisa dilihat bahwa instalasi yang akan disentuh telah bebas tegangan.
         Instalasi mempunyai PMS untuk mentanahkan instalasi. Sebelum disentuh PMS tanah harus dimasukkan agar potensial yang akan disentuh sama potensial tanah.

By Endi Sopyandi

Kamis, 07 Februari 2013

Tentang Panas Bumi

Energi Geo (Bumi) thermal (panas) berarti memanfaatkan panas dari dalam bumi. Inti planet kita sangat panas- estimasi saat ini adalah,500°C (9,932° F)- jadi tidak mengherankan jika tiga meter teratas permukaan bumi tetap konstan mendekati 10°C-16°C (50°F-60°F) setiap tahun. Berkat berbagai macam proses geologi, pada beberapa tempat temperatur yang lebih tinggi dapat ditemukan di beberapa tempat.


Menempatkan panas untuk bekerja

Dimana sumber air panas geothermal dekat permukaan, air panas itu dapat langsung dipipakan ke tempat yang membutuhkan panas. Ini adalah salah satu cara geothermal digunakan untuk air panas, menghangatkan rumah, untuk menghangatkan rumah kaca dan bahkan mencairkan salju di jalan.

Bahkan di tempat dimana penyimpanan panas bumi tidak mudah diakses, pompa pemanas tanah dapat membahwa kehangatan ke permukaan dan kedalam gedung. Cara ini bekerja dimana saja karena temparatur di bawah tanah tetap konstan selama tahunan. Sistem yang sama dapat digunakan untuk menghangatkan gedung di musim dingin dan mendinginkan gedung di musim panas.

Pembangkit listrik

Pembangkit Listrik tenaga geothermal menggunakan sumur dengan kedalaman sampai 1.5 KM atau lebih untuk mencapai cadangan panas bumi yang sangat panas. Beberapa pembangkit listrik ini menggunakan panas dari cadangan untuk secara langsung menggerakan turbin. Yang lainnya memompa air panas bertekanan tinggi ke dalam tangki bertekanan rendah. Hal ini menyebabkan "kilatan panas" yang digunakan untuk menjalankan generator turbin. Pembangkit listrik paling baru menggunakan air panas dari tanah untuk memanaskan cairan lain, seperti isobutene, yang dipanaskan pada temperatur rendah yang lebih rendah dari air. Ketika cairan ini menguap dan mengembang, maka cairan ini akan menggerakan turbin generator.

Keuntungan Tenaga Panas Bumi

Pembangkit listrik tenaga Panas Bumi hampir tidak menimpulkan polusi atau emisi gas rumah kaca. Tenaga ini juga tidak berisik dan dapat diandalkan. Pembangkit listik tenaga geothermal menghasilkan listrik sekitar 90%, dibandingkan 65-75 persen pembangkit listrik berbahan bakar fosil.

Sayangnya, bahkan di banyak negara dengan cadangan panas bumi melimpah, sumber energi terbarukan yang telah terbukti ini tidak dimanfaatkan secara besar-besaran.

sumber: greenpiece indonesia

Isu Pemanasan Global

Pemanasan global dan polusi dan pembakaran bahan bakar fosil yang menyebabkan bahwa ada ancaman di seluruh dunia. Selimut ini polusi dunia, perangkap panas dan membuat efek rumah kaca yang mempengaruhi atmosfir bumi. Semua ini berdampak pada persediaan air bersih, kesehatan masyarakat, pertanian, pantai, hutan, dan banyak lagi.

Energi bersih, terbaharukan dan ramah lingkungan

Panas Bumi adalah sumber energi panas yang terkandung di dalam air panas, uap air, dan batuan bersama mineral ikutan dan gas lainnya yang secara genetik semuanya tidak dapat dipisahkan dalam suatu sistem Panas Bumi dan untuk pemanfaatannya diperlukan proses penambangan.

Pemanfaatan panas bumi relatif ramah lingkungan, terutama karena tidak memberikan kontribusi gas rumah kaca, sehingga perlu didorong dan dipacu perwujudannya; pemanfaatan panas bumi akan mengurangi ketergantungan terhadap bahan bakar minyak sehingga dapat menghemat cadangan minyak bumi

Potensi energi panas bumi di Indonesia mencakup 40% potensi panas bumi dunia, tersebar di 251 lokasi pada 26 propinsi dengan total potensi energi 27.140 MW atau setara 219 Milyar ekuivalen Barrel minyak. Kapasitas terpasang saat ini 1.194 atau 4% dari seluruh potensi yang ada.

sumber: PERTAMINA GeoThermal Energy

PANAS BUMI DI INDONESIA: PROBLEM SOLVER ATAU PROBLEM MAKER?

Kalau kita membaca judul di atas, terbayang betapa berat beban yang harus ditanggung pihak-pihak yang terkait dengan pengembangan panas bumi. Dari sekian banyak stakeholders pengembangan panas bumi, paling tidak ada 3 pihak utama, yaitu pengembang panas bumi, PLN sebagai pembeli dan pemerintah sebagai regulator.

Mengapa sampai ada pertanyaan di atas? Ini dikarenakan banyak pihak yang berpendapat, yang mengisyaratkan ketidakyakinan, apakah pengembangan panas bumi merupakan langkah yang strategis, tepat, dan ekonomis buat Negara ataukah malah sebaliknya, akan memberikan beban kepada Negara ini. Meskipun pada sisi yang lain, banyak pihak juga yang optimis bahwa panas bumi akan memberikan solusi terhadap kekurangan pasokan listrik nasional. Pertanyaan yang sering diutarakan adalah pada harga beli listrik berapa yang harus ditanggung oleh PLN.

Panas Bumi

Seperti diketahui dari data Pemerintah, bahwa Indonesia memiliki potensi panas bumi sebesar 40% cadangan dunia, yaitu mencapai 27.000 MW. Jumlah yang sangat besar apabila dapat dikembangkan dan dimanfaatkan sebaik-baiknya untuk penyediaan listrik nasional. Sampai sejauh ini, pemanfaatannya hanya sebesar 1.196 MW (4.4%) saja yang berasal dari 7 pembangkit listrik yaitu di Jawa, Sulawesi dan Sumatera Utara. Mengapa baru sebesar itu? Dalam kebijakan energy-mix ditargetkan bahwa pada tahun 2025, Indonesia harus sudah dapat memanfaatkan panas bumi sebagai sumber energi minimum 5% (atau lebih dari 1.350 MW) terhadap konsumsi energi nasional. Berdasarkan milestone-nya, sesuai yang termuat dalam Blue Print Pengelolaan Energi Nasional 2006-2025, diperlukan penambahan lebih dari 5.000 MW Pembangkit Listrik Tenaga Panasbumi (PLTP) sebelum tahun 2015. Hal ini kemudian tertuang dalam Rencana Proyek Kelistrikan 10.000 MW Tahap Kedua antara tahun 2010-2015.

Panas Bumi di Indonesia

Dari beberapa artikel yang Penulis baca, kebutuhan listrik nasional akan meningkat antara 6-10% per tahun. Dari data PLN Jawa Bali, beban puncak dari Januari sampai dengan April 2010 berkisar antara 14.000-17.000 MW (80% dari beban nasional). Apabila dihitung rata-rata sebesar 16.000 MW, maka kebutuhan listrik nasional saat ini menjadi sekitar 20.000 MW. Rata-rata margin cadangan listrik nasional saat ini adalah 20% sedangkan persentase margin yang ideal diasumsikan sebesar 35%. Dengan mempertimbangkan kehilangan listrik secara nasional rata-rata sebesar 10% (tahun 2009), maka jumlah listrik yang harus tersedia pada kuartal pertama 2010 menjadi sekitar 29.000 MW. Tingkat elektrifikasi nasional sampai dengan Oktober 2009 baru sebesar 64% (masih di bawah 50% untuk Indonesia bagian timur, sedang Jakarta hampir 100%). Target PLN adalah 80% pada tahun 2014, terutama akan tercapai dengan masuknya pengusahaan listrik oleh swasta. Bagaimana kebutuhan listrik nasional sebesar itu dapat terpenuhi? Direktur Utama PT PLN (Persero) sebelum Dahlan Iskan, Fahmi Mochtar pernah mengatakan bahwa ada 4 tantangan utama yang menjadi penghambat percepatan penyediaan energi listrik nasional yaitu keseimbangan antara supply dan demand, tarif dan subsidi, optimalisasi "fuel mix" serta keamanan penyediaan energi primer. Dari situs Berita Indonesia, April 2009, kapasitas pembangkitan pada tahun 2009 adalah sebesar 29.705 MW (Jawa-Bali 22.302 MW dan di luar Jawa-Bali sebesar 7.403 MW). Dari data ini dapat dilihat bahwa margin cadangan listrik yang kita punyai relatif kecil. Inilah salah satu penyebab mengapa masih sering terjadi shortage listrik di Jawa-Bali.



Kamojang

Sejauh mana cadangan energi nasional mampu menjawab tantangan kebutuhan listrik di atas? Menurut dokumen Departemen Energi Dan Sumber Daya Mineral, Siaran Pers Nomor 24/HUMAS DESDM/2008 pada bulan April 2008 tentang Membangun Ketahanan Energi Nasional, disebutkan bahwa pada April 2008, cadangan dan produksi energi Indonesia terdiri dari Minyak Bumi dengan sumber daya 56,6 miliar barel, cadangan 8,4 miliar barel, produksi 348 juta barel dan rasio cadangan/produksi 24 tahun. Gas bumi dengan sumber daya 334,5 TSCF, cadangan 165 TSCF, produksi 2,79 TSCF dan rasio cadangan/produksi 59 tahun. Batubara dengan sumber daya 90,5 miliar ton, cadangan 18,7 miliar ton dan produksi 201 juta ton, sedangkan rasio cadangan/produksi 93 tahun. Coal Bed Methane (CBM) dengan sumber daya 453 TSCF. Tenaga air 75,67 GW, panas bumi 27 GW, mikro hydro 0,45 GW, biomass 49,81 GW, tenaga surya 4,8 kWh/m2/day, tenaga angin 9,29 GW dan uranium 3 GW untuk 11 tahun (hanya di Kalan, Kalimantan Barat). Dari cadangan yang tersisa, bahan bakar fosil akan habis dalam waktu yang tidak terlalu lama. Dengan mengandalkan sumber energi dari fosil maka akan ada ketergantungan yang tinggi terhadap harga pasar dan kehilangan kesempatan untuk mendapatkan pendapatan/devisa dari ekspor bahan bahan bakar fosil tersebut karena pemanfaatan di dalam negeri. Panas bumi mempunyai keunikan secara alami yang tidak dipunyai oleh sebagian besar jenis energi yang lain, diantaranya adalah bahwa hasil dari panas bumi tidak dapat di-ekspor, hanya dapat dimanfaatkan di lokasi asal panas bumi tersebut dihasilkan, ramah lingkungan untuk mendukung usaha pemerintah merespon isu global warming, merupakan energi terbarukan, pengusahaannya tidak memerlukan lahan yang luas, tingkat keandalan pembangkit yang tinggi sehingga menjadi dapat alternative base-load dari PLN, bebas dari risiko kenaikan harga bahan bakar fosil, tidak tergantung dari cuaca, dan pada akhirnya dapat menggantikan sebagian dari bahan bakar fosil yang makin habis.

Pengusahaan panas bumi mempunyai keunikan dibandingkan dengan energi yang lain. Produksi dari pengusahaan hulu adalah uap panas yang sebagian besar akan dipakai untuk menggerakkan sudu-sudu pembangkit listrik. Kapasitas dan jenis pembangkit listrik dirancang dengan mempertimbangkan parameter-parameter tertentu; terutama karakteristik uap, cadangan yang tersedia di reservoir, kemampuan produksi uap per sumur, dan kondisi lokasi untuk tempat pembangkit. Hal-hal tersebut akan menentukan besarnya investasi yang akan ditanamkan. Skema pengusahaan dari hulu (produksi uap) ke hilir (produksi listrik) ini dikenal dengan skema total project. Pengusahaan dapat juga mengusahakan produksi uapnya saja, kemudian dijual ke pihak lain seperti yang terjadi di wilayah Gunung Salak, Drajat dan Lahendong. Pada saat ini investor secara umum lebih tertarik dengan skema pengembangan total project. Hal ini dapat dipahami karena dengan skema total project, pengembang dapat menjamin kepastian tidak adanya keterlambatan pemanfaatan produksi uap menjadi listrik. Namun demikian, baik skema parsial maupun total project, pengembang haruslah mendapatkan kepastian bahwa produksi uap dan listriknya dibeli dengan harga yang wajar oleh pembeli, dalam hal ini PLN. Karena PLN adalah pembeli tunggal listrik hasil pengusahaan tersebut, maka wajar apabila sebelum pengembang memutuskan suatu investasi, mulai dari mengikuti lelang wilayah panas bumi, eksplorasi dan eksploitasi, sudah harus diketahui berapa harga listrik yang akan diterima kalau berhasil memproduksi uap dan listrik. Hal ini berbeda dengan pengusahaan batubara dan migas, yang hasil produksinya dapat dijual bebas ke pasar dengan harga pasar. Karena itu dengan adanya beberapa lelang WKP yang melelangkan harga jual listrik sebagai penentu, dapat dikatakan sebagai langkah terobosan Pemerintah untuk mempercepat proses pembangunan pembangkit listrik panas bumi. Penentuan harga beli listrik ini sempat lama ditunggu oleh para pengembang, dan setelah melalui beberapa perubahan peraturan, akhirnya Pemerintah mengeluarkan Peraturan Menteri ESDM Nomor 32/2009 pada tanggal 4 Desember 2009, yang menetapkan harga patokan tertinggi pembelian tenaga listrik oleh PLN dari pembangkit listrik tenaga panas bumi sebesar 9,70 sen US$/Kwh. Harga ini sama dengan harga beli listrik yang diusulkan oleh API (Asosiasi Panas Bumi Indonesia), namun lebih tinggi dari usulan PLN yaitu sebesar 7,6 sen US$/Kwh. Usulan API dibarengi dengan rekomendasi bahwa project IRR yang menarik untuk pengembang adalah 16%, lebih tinggi dibandingkan dengan usulan PLN sebesar 12%. JICA/BKF-DEPKEU melakukan kajian harga beli listrik panas bumi dan hasilnya adalah sebesar 11,9 sen US$/Kwh. Perbandingan yang lebih lengkap dapat dilihat pada tabel di bawah ini.

Apakah besaran maksimum harga beli di atas memberikan dampak positif sehingga membuat para pengembang tertarik dan segera menanamkan investasi? Dari beberapa kesempatan dan berdasarkan uraian di beberapa media, nampaknya pengembang dapat menerima ceiling price yang dikeluarkan, namun masih menyisakan kebimbangan; diantaranya adalah apakah PLN akan membeli listrik dengan hasil lelang WKP? Bagaimana dengan key terms and conditions dari Electricity Sales Contract-nya (ESC)? PLN dalam banyak kesempatan masih meyakini bahwa harga beli listrik panas bumi seharusnya sama atau lebih rendah dari batubara. Masih menurut studi JICA (West JEC), harga beli listrik batubara berfluktuasi tergantung dari harga pasar batubara. Pada harga pasar tertentu, harga beli listrik dari batubara memang masih lebih rendah dari harga beli listrik panas bumi. Dengan memakai harga listrik panas bumi hasil studi JICA, sepanjang harga pasar batubara tidak lebih dari US$ 135 per ton, maka harga beli listrik batubara masih lebih rendah dari harga beli listrik panas bumi. Hal ini tentu menyisakan pertanyaan apakah harga batubara dapat bertahan di bawah harga tersebut dalam 30 tahun ke depan seiring dengan makin menipisnya cadangannya? Bagaimana dampaknya terhadap ketahanan dan swasembada energi nasional?

Tabel 1: Harga Pembelian PLTP dengan Kapasitas 110 MW (Base Price, sen US$/Kwh)
Tabel 2: Harga Listrik Pembangkit Batubara (PLTU) Hasil Studi JICA (West JEC)


Dengan memperhitungan keunikan panas bumi, JICA (West JEC) menyatakan bahwa totalbiaya pembangkit listrik PLTU (batubara) adalah sen 17,7 sen US$/kwh, lebih mahal sebesar 5,8 sen US$ per kwh dibandingkan dengan panas bumi. Perbedaan ini disebabkan oleh selisih efisiensi pembangkit, kesempatan mendapatkan devisa dari ekspor batubara, selisih pendapatan pajak serta biaya lingkungan yang harus dibebankan untuk pengusahaan batubara.

Apakah harga beli listrik panas bumi sebesar di atas tidak memberikan beban subsisi yang semakin besar ke Negara? Memang, banyak pihak yang mengatakan bahwa sejalan dengan pengembangan panas bumi sebagai sumber tenaga listrik, maka biaya subsidi yang akan ditanggung Negara akan meningkat. Hal ini tidak tepat. Seperti diketahui bahwa BPP (Biaya Pokok Penyediaan) PLN tahun 2009 adalah sebesar US$ 10 sen sedangkan harga tertinggi listrik panas bumi yang ditetapkan adalah US$ 9,7 sen. Sehingga harga beli listrik pada lokasi yang sama (electricity grid) panas bumi secara nasional masih lebih rendah dari BPP. Dengan berjalannya waktu dan dengan terambilnya porsi listrik dari tenaga diesel yang tergantikan oleh sumber panas bumi misalnya, maka BPP tentu akan turun sehingga harga beli listrik panas bumi tidak lagi lebih rendah dari BPP.

Dari semua uraian di atas, Penulis berpendapat bahwa pengusahaan tenaga listrik dari panas bumi merupakan salah satu solusi yang tepat; terutama untuk menambah tingkat elektrifikasi nasional, meningkatkan ketahanan Negara dan swasembada di bidang listrik karena pemanfaatan sumberdaya lokal yang secara karakteristik harus dimanfaatkan di tempat (non-exportable), mendukung penuh upaya Negara dalam menurunkan efek global warming, dan di atas semua itu, pemanfaatan sumberdaya panas bumi, secara integral, tidak memberikan beban subsidi yang lebih besar kepada Negara. Salah satu kunci sukses percepatan pengembangan sumberdaya panas bumi adalah response yang cepat dari PLN dalam pencapaian kesepakatan dengan para pengembang PLTP, baik dari sisi harga beli listrik maupun dalam kesepakatan ketentuan-ketentuan dan kondisi-kondisi yang penting dalam kontrak pembelian listrik. Dan pada akhirnya, kelengkapan dan ketersediaan peraturan-peraturan pendukung secara cepat dan akurat tentu sangat diperlukan oleh PLN dan para pengembang untuk bersama-sama memajukan bangsa dan Negara ini.

Semoga...

Catatan Tentang Penulis
Win Sukardi (Ir., M. Eng, MM, MBA, M. Hum, C.P.M.), salah satu pemerhati energi dan alumni Teknik Mesin UB-1987.


sumber